Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond.

نویسندگان

  • David M Toyli
  • Charles F de las Casas
  • David J Christle
  • Viatcheslav V Dobrovitski
  • David D Awschalom
چکیده

We demonstrate fluorescence thermometry techniques with sensitivities approaching 10 mK · Hz(-1/2) based on the spin-dependent photoluminescence of nitrogen vacancy (NV) centers in diamond. These techniques use dynamical decoupling protocols to convert thermally induced shifts in the NV center's spin resonance frequencies into large changes in its fluorescence. By mitigating interactions with nearby nuclear spins and facilitating selective thermal measurements, these protocols enhance the spin coherence times accessible for thermometry by 45-fold, corresponding to a 7-fold improvement in the NV center's temperature sensitivity. Moreover, we demonstrate these techniques can be applied over a broad temperature range and in both finite and near-zero magnetic field environments. This versatility suggests that the quantum coherence of single spins could be practically leveraged for sensitive thermometry in a wide variety of biological and microscale systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent dynamics of a single spin interacting with an adjustable spin bath.

Phase coherence is a fundamental concept in quantum mechanics. Understanding the loss of coherence is paramount for future quantum information processing. We studied the coherent dynamics of a single central spin (a nitrogen-vacancy center) coupled to a bath of spins (nitrogen impurities) in diamond. Our experiments show that both the internal interactions of the bath and the coupling between t...

متن کامل

Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond

Precise readout of spin states is crucial for any approach toward physical realization of a spin-based quantum computer and for magnetometry with single spins. Here, we report a method to strongly improve the optical readout fidelity of electron spin states associated with single nitrogen-vacancy NV centers in diamond. The signal-to-noise ratio is enhanced significantly by performing conditiona...

متن کامل

Single Spin Coherence in Semiconductors

Els ts orn 2. S ingle Electron Spins in Quantum Dots 3 2.1. O ptical selection rules and the Faraday effect 4 2.2. M easuring a single electron spin by Kerr rotation 6 2.3. S pin dynamics of a single electron spin 9 2.4. U ltrafast manipulation using the optical Stark effect 13 2.5. C onclusions 17 3. F ew Magnetic Spins in Quantum Wells 18 3.1. M n-ions in GaAs as optical spin centers 19 3.2. ...

متن کامل

Spin coherence during optical excitation of a single nitrogen-vacancy center in diamond.

We examine the quantum spin state of a single nitrogen-vacancy (NV) center in diamond at room temperature as it makes a transition from the orbital ground state (GS) to the orbital excited state (ES) during nonresonant optical excitation. While the fluorescence readout of NV-center spins relies on conservation of the longitudinal spin projection during optical excitation, the question of quantu...

متن کامل

Simulating and Optimising Quantum Thermometry Using Single Photons

A classical thermometer typically works by exchanging energy with the system being measured until it comes to equilibrium, at which point the readout is related to the final energy state of the thermometer. A recent paper noted that with a quantum thermometer consisting of a single spin/qubit, temperature discrimination is better achieved at finite times rather than once equilibration is essent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 21  شماره 

صفحات  -

تاریخ انتشار 2013